If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49=(7y)^2
We move all terms to the left:
49-((7y)^2)=0
determiningTheFunctionDomain -7y^2+49=0
a = -7; b = 0; c = +49;
Δ = b2-4ac
Δ = 02-4·(-7)·49
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*-7}=\frac{0-14\sqrt{7}}{-14} =-\frac{14\sqrt{7}}{-14} =-\frac{\sqrt{7}}{-1} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*-7}=\frac{0+14\sqrt{7}}{-14} =\frac{14\sqrt{7}}{-14} =\frac{\sqrt{7}}{-1} $
| 3t+8=4t+3= | | (x+72)+(2x)=180 | | x/90-x=2/7 | | 7e-136=500 | | p/7=3/21 | | u/7-2.3=-13.5 | | X=4p3p | | 19c-15c-c-2c=15 | | 11x-58=63 | | 5s+1=43 | | 3r+r-r=18 | | 3r-r+2r-r=15 | | 2t/3-3=140 | | .21(5)+0.06m=1.95 | | 3x^2-x-10=-x+10 | | 22b-22=44 | | n^2-3n+144=0 | | k+2k+k-3=5 | | 85x+425=7225 | | z+117=180 | | g+g-g+4g-1=14 | | 6/13=3/c6/13=3/c | | 8k-8k+3k+3=15 | | 7-11n=-15n=13 | | 17x-5x=10+12-4 | | 18y+4y-16y-3=9 | | 11*t–1=-11 | | 11x-58=180 | | 180(n-2)/n=5760 | | 11(t–1)=-11 | | h/3=35 | | x+5/5=9 |